Time Response Analysis

Contents

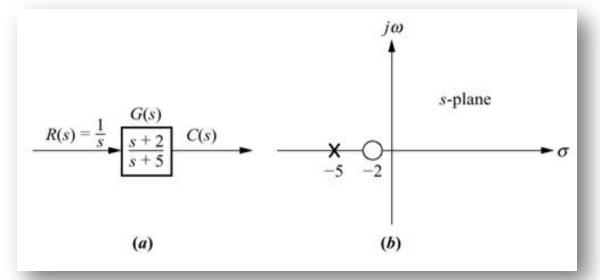
- Introduction
- Influence of Poles on Time Response
- Transient Response of First-Order System
- Transient Response of Second-Order System

Introduction

- The concept of poles and zeros, fundamental to the analysis of and design of control system, simplifies the evaluation of system response.
- ► The **poles** of a transfer function are:
 - i. Values of the Laplace Transform variables s, that cause the transfer function to become infinite.
 - ii. Any roots of the denominator of the transfer function that are common to roots of the numerator.
- The zeros of a transfer function are:
 - i. The values of the Laplace Transform variable s, that cause the transfer function to become zero.
 - ii. Any roots of the numerator of the transfer function that are common to roots of the denominator.

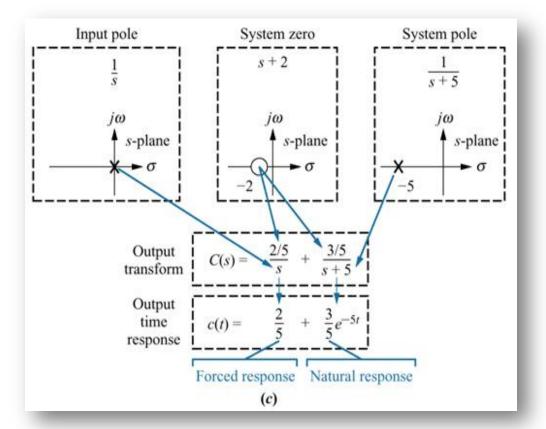
Influence of Poles on Time Response

- ► The output response of a system is a sum of
 - i. Forced response
 - ii. Natural response



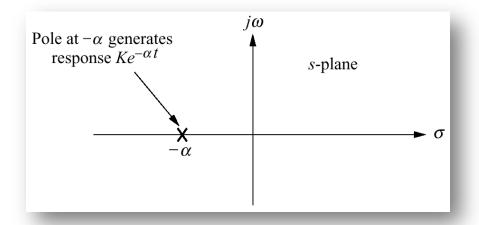
- a) System showing an input and an output
- b) Pole-zero plot of the system

Influence of Poles on Time Response

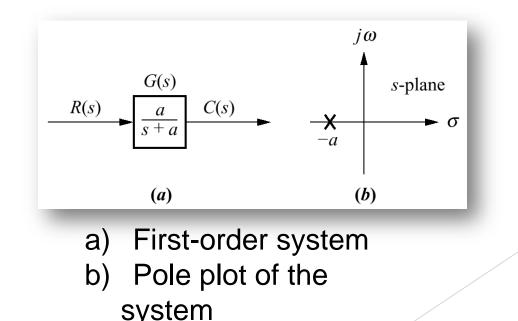


c) Evolution of a system response. Follow the blue arrows to see the evolution of system component generated by the pole or zero

Influence of Poles on Time Response



Effect of a real-axis pole upon transient response



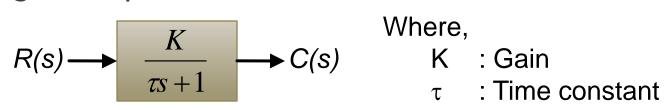
General form:

$$G(s) = \frac{C(s)}{R(s)} = \frac{K}{\tau s + 1}$$

Problem: Derive the transfer function for the following circuit

$$G(s) = \frac{1}{RCs + 1}$$

- Transient Response: Gradual change of output from initial to the desired condition.
- Block diagram representation:



By definition itself, the input to the system should be a step function which is given by the following:

$$R(s) = \frac{1}{s}$$

General form:

$$G(s) = \frac{C(s)}{R(s)} = \frac{K}{\tau s + 1} \qquad \longrightarrow \qquad C(s) = G(s)R(s)$$

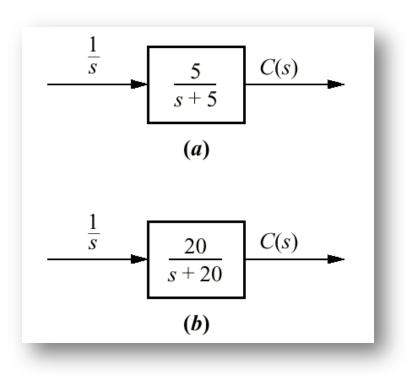
• Output response:

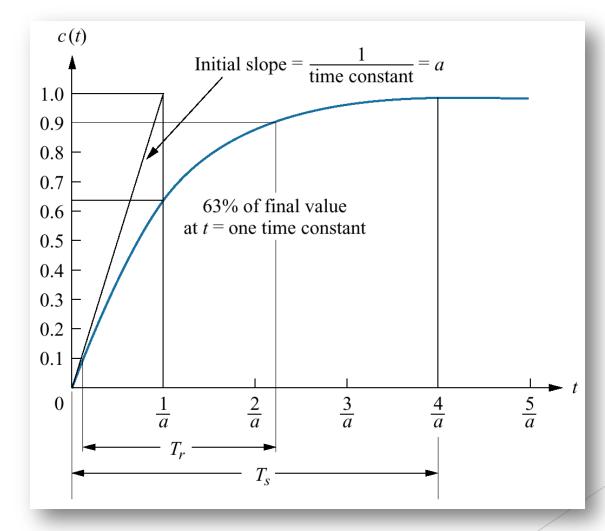
$$C(s) = \left(\frac{1}{s}\right) \left(\frac{K}{\tau s + 1}\right)$$

$$= \frac{A}{s} + \frac{B}{\tau s + 1}$$

$$c(t) = A + \frac{B}{\tau} e^{-t/\tau}$$

Problem: Find the forced and natural responses for the following systems





First-order system response to a unit step

- \blacktriangleright Time constant, τ
 - ▶ The time for e^{-at} to decay 37% of its initial value.
- Rise time, t_r
 - The time for the waveform to go

Settling time, t, ▶ The time for the response to reach, and stay within 2% of its final value.

$$t_s = \frac{4}{a}$$

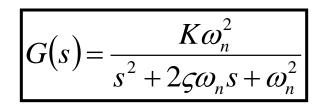
$$\tau = \frac{1}{a}$$

Problem: For a system with the transfer function shown below, find the relevant response specifications

$$G(s) = \frac{50}{s+50}$$

- i. Time constant, τ
- ii. Settling time, t_s
- iii. Rise time, t_r

General form:



Where,

K : Gain

 ς : Damping ratio ω_n : Undamped natural

frequency

► Roots of denominator: $2\varsigma\omega_n s + \omega_n^2 = 0$

$$s_{1,2} = -\varsigma \omega_n \pm \omega_n \sqrt{\varsigma^2 - 1}$$

► Natural frequency, ω_n

Frequency of oscillation of the system without damping.

- \blacktriangleright Damping ratio, ς
 - Quantity that compares the exponential decay frequency of the envelope to the natural frequency.

Exponential decay frequency

Natural frequency (rad/s)

Problem: Find the step response for the following transfer function

$$G(s) = \frac{225}{s^2 + 30s + 225}$$

Answer:

$$c(t) = 1 - e^{-15t} - 15te^{-15t}$$

***** Problem: For each of the transfer function, find the values of ς and ω_n , as well as characterize the nature of the response.

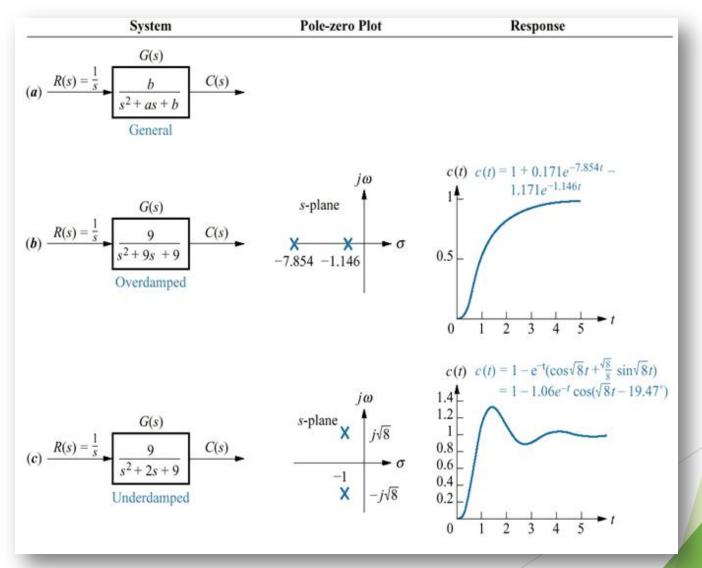
a)
$$G(s) = \frac{400}{s^2 + 12s + 400}$$

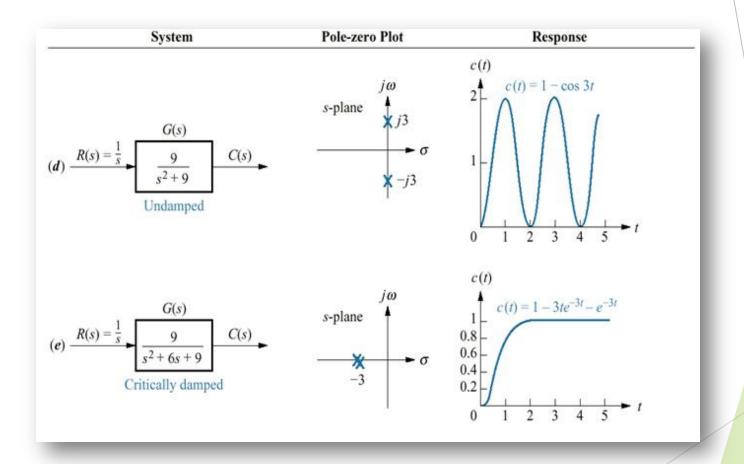
b)
$$G(s) = \frac{900}{s^2 + 90s + 900}$$

c)
$$G(s) = \frac{225}{s^2 + 90s + 900}$$

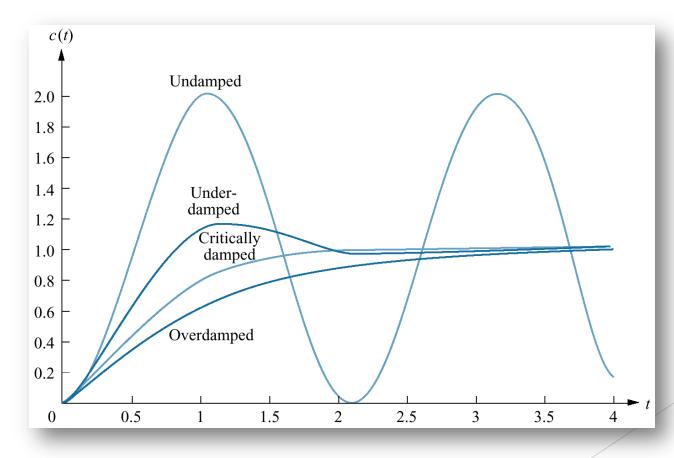
c)
$$G(s) = \frac{1}{s^2 + 30s + 225}$$

^{d)}
$$G(s) = \frac{625}{s^2 + 625}$$

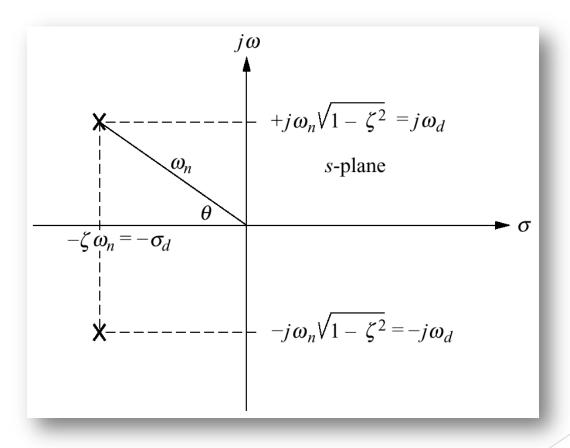




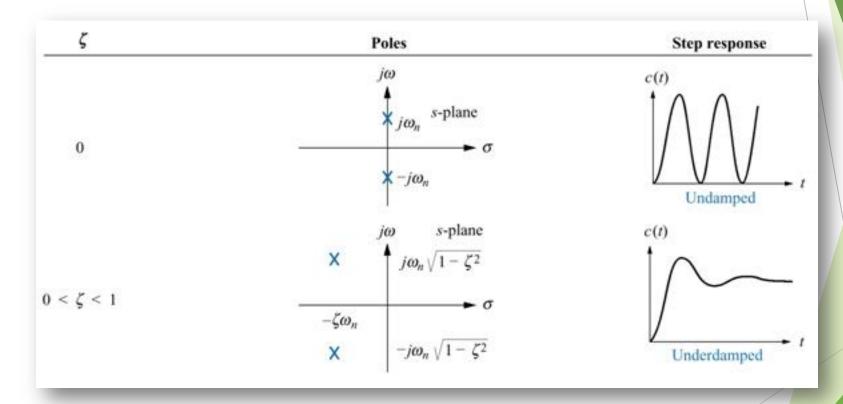
Step responses for second-order system damping cases



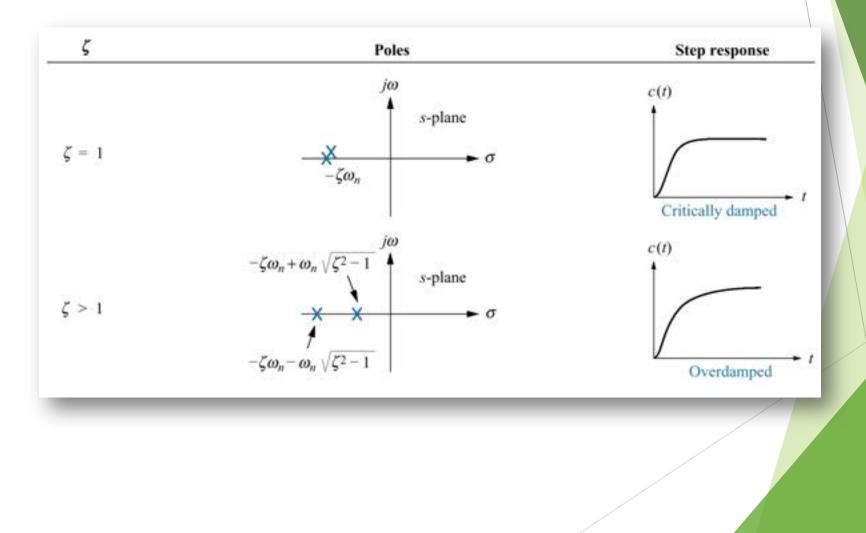
Pole plot for the underdamped second-order system



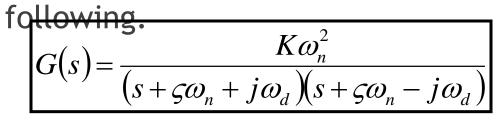
Second-order response as a function of damping ratio

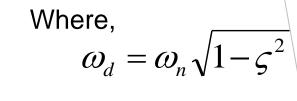


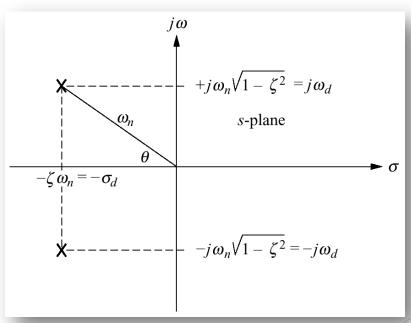
Second-order response as a function of damping ratio



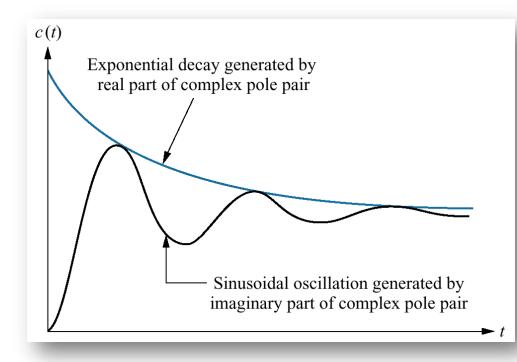
 \triangleright When 0 < ς < 1, the transfer function is given by the



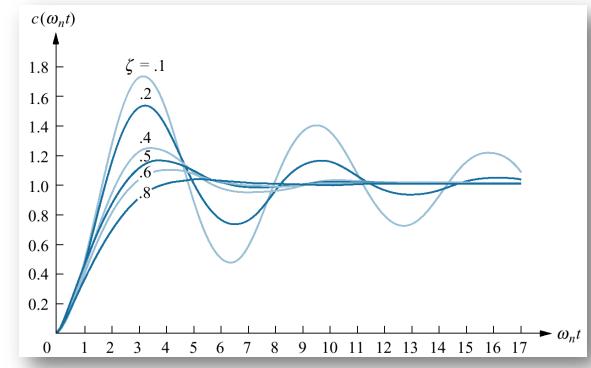




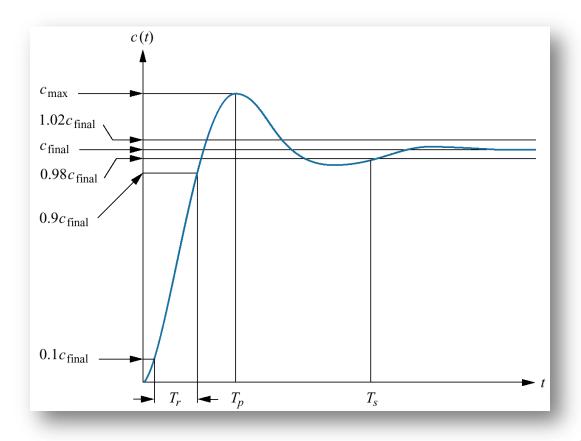
Second-order response components generated by complex poles



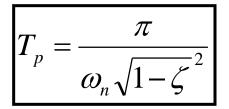
Second-order underdamped responses for damping ratio value



Second-order underdamped response specifications



- \blacktriangleright Rise time, T_r
 - The time for the waveform to go from 0.1 to 0.9 of its final value.
- Peak time, T_p
 The time required to reach the first or maximum peak.



- Settling time, T_s
 - The time required for the transient's damped oscillation to reach and stay within ±2% of the steady-state value.

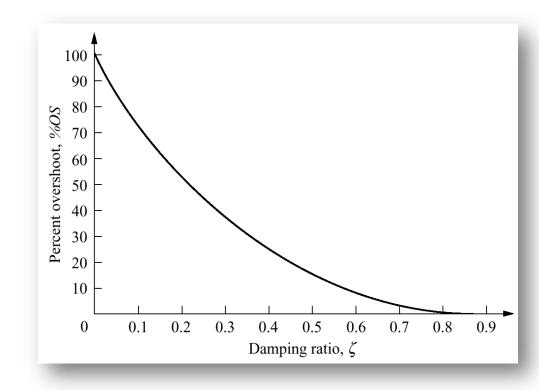
$$T_s = \frac{4}{\zeta \omega_n}$$

- Percent overshoot, %OS
 - The amount that the waveform overshoots the steady-state, or final value at peak time, expressed as a percentage of the steady-state value.

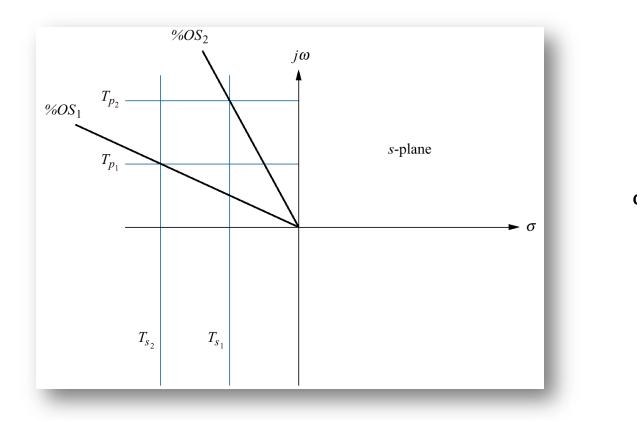
$$\% OS = e^{-(\zeta \pi / \sqrt{1 - \zeta^2})} \times 100\%$$

$$\zeta = \frac{-\ln(\% OS / 100)}{\sqrt{\pi^2 + \ln^2(\% OS / 100)}}$$

Percent overshoot versus damping ratio

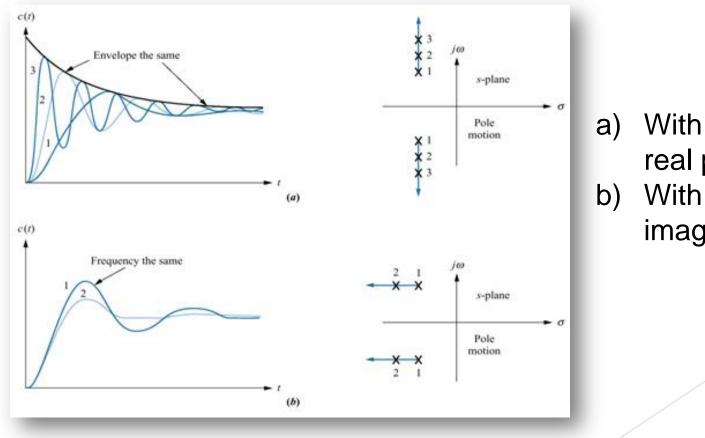


Lines of constant peak time T_p, settling time T_s and percent overshoot %OS



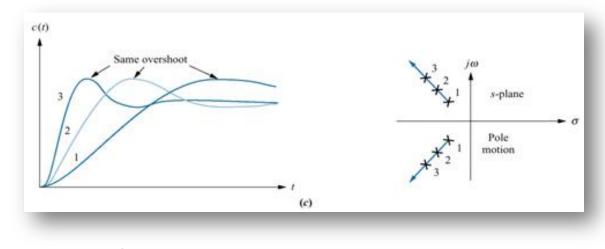
 $T_{s2} < T_{s1}$ $T_{p2} < T_{p1}$ %OS₁ < %OS₂

Step responses of second-order underdamped systems as poles move



- a) With constant real part
- b) With constant imaginary part

Step responses of second-order underdamped systems as poles move



c) With constant damping ratio

Further Reading...

Chapter 4

i. Nise N.S. (2004). Control System Engineering (4th Ed), John Wiley & Sons.

Chapter 5

i. Dorf R.C., Bishop R.H. (2001). Modern Control Systems (9th Ed), Prentice Hall.